
197

Інформатика, обчислювальна техніка та автоматизація

UDC 004
DOI https://doi.org/10.32782/2663-5941/2023.3.1/31

Nikitenko Ye.V.
National University of Life and Environmental Sciences of Ukraine

Guida O.G.
V.I. Vernadsky Taurida National University

ARCHITECTURAL FRAMEWORK FOR THE FUNCTIONALIZATION
OF MOBILE APPLICATION FOR IOS BASED
ON REACTIVE EXTENSIONS

As the demand for services via mobile applications grows, users' expectations of the quality and speed of the
application are increasing significantly. Another serious problem is the pressure from competitors. As a result, the
complexity of the programs being developed, the size of the code base, and the number of different specialties and
teams for one project are increasing. It also makes it harder to manage, report, and hire new staff.

The main goal of this work is to develop a framework for the iOS operating system that will provide a
convenient API for developing application functions, limiting the developer in setting up communications between
architectural components, focusing him on the details of implementing the functions of the business domain.

The software product under development is an architectural framework for templating the functionality of an
iOS mobile application based on Reactive Extensions.

The result of the work is the ability of the framework to provide the following capabilities:
− create multi-module applications;
− business logic of applications should be reusable;
− applications should be easy to test;
− application code should be easily modifiable;
− an application using the framework should be easy to maintain;
− an application using the framework should be easily extensible.
In the future, this framework can be used in software for designers and managers, which will allow creating

scenarios at the software design stage and code generators that reduce human impact on the quality of the
resulting work and the speed of its execution. Such software tools have a large economic impact on the mobile
development and software development industry as a whole.

Key words: software architecture, iOS operating system, application, framework.

Problem statement. One of the oldest ways to
organize software code is to create a software architecture.
A software architecture is a set of the most important
decisions about the organization of software systems. It
facilitates communication between several developers,
allows testing individual parts of the code, reusing them,
easily modifying them without undesirable impact
on other systems, and adding new system modules to
increase the program's functionality [1].

The problem with implementing such a solution
is the possible inaccuracy of team members'
understanding of the correct approach to complying
with certain architectural rules. For example, one and
the same architectural rule can be understood in several
ways, which leads to a conflict in understanding, the
choice of wrong solutions, and system disruption.

Formulation of the article's objectives. The aim
of the work is to develop a framework that should
include a set of tools that:

– allow you to describe scenarios for using the
application functionality in a declarative way;

– automatically manage the data flow of a
scenario based on its description;

– allow you to interact with the iOS Cocoa
Touch Framework, considering the life cycle of its
components.

Also, the framework should provide a simple,
clear, and unambiguous interface for work, and
facilitate the writing of understandable, testable code
that complies with the SOLID principles.

Outline of the main material. Reactive
Extensions or ReactiveX is a combination of the
Observer, Iterator, and functional programming
design pattern created by Netflix for the JavaScript
programming language [2]. The implementation for
the Swift programming language, which is the official
programming language for the iOS platform, inherits
all the original characteristics, adapting the API to a
familiar form for its developers.

Том 34 (73) № 3 2023198

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

This programming methodology promotes
application development in a declarative manner. It
consists of three main ideas:

– data source in the form of Observable<Element>;
– subscriber in the form of Observer<Element>;
– functional operators that create new

Observable<Element> based on others.
RX has many advantages over the classical

imperative approach to programming. Because it is
one of the implementations of the Observer pattern,
the application always operates on up-to-date
data. A close observation shows that this approach
meets the other two great hallmarks of good design,
namely unidirectionality and a single source of
truth. Information is always moving away from the
Observable and traveling toward the Observer. Taking
into account that unidirectionality is always realized
through pure functions and immutable state, we can
notice these two important features inherent in this
implementation. Each Observable has operators that
allow you to modify the data it operates on. However,
after each operator is used, it creates a new object with
the modified data, which guarantees the immutability
of the state. This is one of the possible implementations
of the Builder design pattern. Operators usually act as
pure functions, but there are some exceptions that exist
to combine imperative code into reactive code.

Scenario description
Each scenario changes the system state during and

after its execution, which may affect the execution of
other scenarios. This is a very important note, since
the system functionality does not exist completely
separately from it, which, in the case of free and
uncontrolled modifications of data in the storage,
creates a possible violation of the DRY principle.

When executing consecutive requests in a scenario,
it is possible that the data from the result of the previous
request is needed for the next request, or the data that
was delivered by the actor at the beginning is needed
to form a non-first request, which means that within
one scenario, all the necessary data must be stored in a
special storage that does not change the general state of
the system, but exists locally for the proper functioning
of the scenario. Such a storage will be called
ActionState, and the class responsible for processing
the state of this storage and creating new requests will
be called ActionProcessor. In Figure 1, you can see
an extended data flow diagram that describes all the
processes involved in managing a scenario.

Since each scenario changes the state of the system,
the framework must implement an interface that
explicitly declares possible changes. This is necessary
to ensure that the execution of the scenario does not

cause undesirable effects that are very difficult to
track. Another important necessity is a special class
whose responsibility is to receive the ActionState at
the end of the script execution for further updating
the repository. The name of this class is Repository.

Fig. 1. Data flow diagram using the ActionProcessor

In Figure 2, you can see an example of a data flow
diagram of a successful scenario that updates the
state of the overall system. The state of the repository
directly affects the ability to execute a particular use
case. This means that every time the state changes after
all requests are completed or an erroneous response
is received, all scenarios that are not configured to
work properly in the new state will stop receiving
messages from actors. A data flow diagram that shows
the checking of the current state before responding to
an actor event and subsequent script execution and
stopping is shown in Figures 3 and 4, respectively.

The number of use cases that can operate in parallel
can be more than one, which means a common system
state for each of them. Because they exist at the same
moment in time and have access to the same data,
the result of executing one script can change the data
for the other, namely the ActionState. Changes in the
scenario state should be predictable, should not lead to
conflicts in the execution of any of the requests of any
of the scenarios at any time. Therefore, considering
all the conditions, each scenario start should begin
with the formation of an initial ActionState, which is
created based on the general state, which acts as the
default state of the scenario and is used in the first
reducer. Figure 5 shows a diagram of the data flows
of a scenario with several queries.

199

Інформатика, обчислювальна техніка та автоматизація

Fig. 2. Data flow diagram
with status updates using Repository

Fig. 3. Data flow diagram with checking the general
state of the system and scenario execution

Fig. 4. Data flow diagram with checking the general
state of the system and stopping the scenario

This way, each scenario can receive updated data
from a common repository and use it in a timely manner.

Fig. 5. Data flow diagram with the implementation
of the initial ActionState based on the general state

Designing the user interface
Because components such as ActionProcessor,

Repository, EffectMapper, ActionService, and
Actor can be represented as protocols, it would be
appropriate to describe the requirements for them in
the basic implementation of the Core constructor, but
such protocols will probably use generalizations that
do not allow them to be used as parameters in functions
due to the peculiarities of the Swift programming
language. Therefore, it is necessary to create basic
implementations of these protocols. Class names will
have the form of the prefix “Base”, which are combined
with the name of the corresponding protocol.

The Actor protocol will consist of a property
that provides the ability to subscribe to a reactive
message stream, and its BaseActor implementation
will encapsulate the implementation of combining
different streams from the external environment into a
single common stream to which Core will subscribe.
In order to conveniently and easily configure different
threads into one, it is necessary to create a special API
that will meet all the requirements, namely, have a
clear and simple interface.

To do this, we will create a special method
in the base class, the purpose of which is to be
overridden in the inheritors and act as a provider
of a special facade for configuring threads. This
solution is necessary because when using methods

Том 34 (73) № 3 2023200

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

to configure threads, you can do it in the wrong
place, which will lead to uncertainty and possible
unexpected bugs when the program runs. To prevent
heirs from interfering with the merge process, you
need to prohibit them from overriding the events
property In the Swift programming language, this
is realized by using the final keyword before the
field name, and in our case, events [3]. The Facade
class will implement a special provide(events:)
method that will take a message source as input and
combine it with other sources in its implementation.
In Figure 6, you can see a diagram of the Actor and
BaseActor protocol classes.

Fig. 6. Diagram of Actor and BaseActor

protocol classes

This way, we designed a simple and clear interface
for connecting notification sources from the external
environment and encapsulated its implementation
from the framework users, reducing the risk of
unexpected bugs by focusing developers' attention on
data sources rather than on their management.

The Repository class is responsible for updating
the state from the ActionState. Since the states
of the scenarios are separate for each of them,
and their data can be managed with reference to
the ActionState type, it is necessary to develop
a convenient API for updating the general state
of the repository. The user will provide the type
of ActionState and the closure to store this state
in a declarative manner, which allows us to shift
the focus to what type of scenario state we are
managing and how we update the overall state [4].
Figure 7 shows the class diagram for the Repository
protocol and its basic implementation.

Fig. 7. Diagram of the Repository
and BaseRepository protocol classes

It is worth noting that in this API we use a special
reactive type – Completable. This is a special case
in the implementation of the previously discussed
Observable, but Completable returns either a flag
indicating the state of successful completion of the
thread execution or its error, compared to Observable,
which can also provide a sequence of elements.

The next protocol and its corresponding class is
ActionService and BaseActionService. It has only one
method – execute(query:), the main purpose of which
is to convert the request object into a specific call to
external methods and convert their responses into a
special Msg object that is configured to work in Core.
However, this is not enough, since the main purpose of
designing a framework is to separate the implementation
from the abstract description of the behavior of program
functions. It is necessary to consider the cases that are
used in every application but are usually ignored: the
request timeout and the number of retries in case of an
error. Each request should be terminated if the result of its
execution does not return long enough to be considered
a failure. For this reason, the basic implementation
should explicitly require the developer to specify the
time to timeout. Repeated requests are not a common
phenomenon in mobile software development, but in
some cases it is a very important nuance that is usually
not mentioned. Because of this, BaseActionService
should provide the ability to specify the number of
repeated requests, which will attract the attention of
developers and encourage them to design functions
in more detail. Another important thing is the fact that
the result of the request execution can return some
data or a simple flag that signals that the request was
completed successfully. In RxSwift, this is implemented

201

Інформатика, обчислювальна техніка та автоматизація

through the already discussed Completable type and
Single, a special Observable type that either returns an
element from the stream and terminates it or terminates
the stream with an error. The BaseActionService API
should provide the ability to comfortably use both types
without additional settings or conversions. Therefore,
a method will be created that will receive the type of
request, a special loop to call the proper function to the
external environment, a loop to convert the successful
and failed response to an Msg object, and variables for
the timeout and the number of possible retries.

It is important to note that escapes for requests
and response transformations must be of a special
type. In Swift, escapes that can be stored in fields or
called later than the function in which they are passed
as a parameter completes must have the @escaping
keyword. This way, the Swift compiler checks all
types in advance and performs additional necessary
optimizations. A diagram of the ActionService and
BaseActionService classes can be seen in Figure 8.

Fig. 8. Diagram of the ActionService
and BaseActionService classes

The most difficult protocol and its base class to design
is the ActionProcessor and its BaseActionProcessor.
This protocol has three independent functions that are
united by a common responsibility – working with
ActionState. Because of this, the API for each method
will be designed separately.

The first task of the processor is to generate the initial
state of the script at the start of its execution. This method
will receive the general state that will be passed to it from
the Repository and the type of ActionState to be created.
In its basic implementation, two levels of facades will be
used. The first-level facade is a class that provides a method
for specifying the type of the general state and creates the

second-level facade. The second-level facade has a method
that receives the type of ActionState to be created and a
closure of type @escaping, which creates a scenario state
object based on the previously specified general state.

The next task of the ActionProcessor is to
reduce the existing scenario state after receiving
a message from the actor or responding to a
request. To do this, the protocol will create the
reduce(currentActionState:newMsg:) method, which
receives the current state of the execution scenario and
the received message from the external environment.
It is important to note that a message is considered to
be both a classic message from an actor and the result
of a scripted request. To implement this method,
special facades of several levels will be created in the
base class. The first-level facade provides a method
that receives an ActionState type and returns an
object of the second-level facade. The second-level
facade has a method that receives a message type and
a reduction function that generates a new state of the
execution scenario. Thus, you can list all possible
changes for one scenario state in a declarative style.

The last responsibility of the ActionProcessor
is to create request objects, which are then
passed to the ActionService. Let's describe the
create(queryType:actionState) method that will receive
the type of the query to be created and the corresponding
ActionState. For the basic implementation, we will use
the already familiar structure of a two-tiered facade.
The method of the first level will receive the type of the
scenario state, and the second level will receive the type
of the query and the closure for its creation.

So, we designed the ActionProcessor protocol and
its basic implementation in the BaseActionProcessor
class. The diagram of the ActionProcessor and
BaseActionProcessor classes can be seen in Figure 9.

Fig. 9. Diagram of classes with ActionProcessor
and BaseActionProcessor

Том 34 (73) № 3 2023202

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

The next entity to be designed is the
EffectMapper. The main task of the EffectMapper
and its BaseEffectMapper is to receive State, Msg,
or Query objects and convert them to an Effect that
is described by the framework user. Let's design the
corresponding methods map(state:), map(msg:), and
map(query:), each of which returns an Effect object.
The basic implementation of the EffectMapper
protocol will provide a convenient interface for
declarative description of transformations. It will
have an onDeclareMap method that receives a special
facade where the user can configure the appropriate
transformations. The facade will offer a special method
for such a conversion. This method will receive the type
of object to be converted as the first parameter, and the
second parameter will be the closure that will be called
for the conversion. Figure 10 shows a diagram with the
EffectMapper and BaseEffectMapper.

Fig. 10. Diagram of the EffectMapper

and BaseEffectMapper classes

The last entity in the main module of the
framework that needs to be designed is the Core. This
is the most complex class compared to the others, but
its API is the easiest to use due to the lack of any
implementation in the inherited classes. Following
the general design style of the framework, a special
method was created that will receive a facade for
configuring scenarios as a parameter. The beginning
of the description of any list of scenarios for one
general state will be the start(from:) method, which
takes as input the type of the general state and returns
the Starter class to describe the scenarios.

Starter provides the react(to:) method, which
begins the description of a specific use case. The

argument to this method is the type of message that
will start the execution of the scenario, and this
method returns a special Reactor class that describes
possible requests and their responses.

Reactor has two methods:
– skip();
– with(call:expecting:).
The first method is called when the user explicitly

ignores the possibility of executing any requests for
the received message and returns an object of type
SkipProcessor with a single process() method. The
second method has the opposite responsibility and
takes as input the type of request that will be created
after receiving the message and the type of expected
response. This is very important, since all other types
of responses that will come from the ActionService
to this request will be considered erroneous and will
stop the script from executing. This method returns a
special object of type QueryProcessor. It provides the
ability to repeatedly call the with(call:waiting) method
to list multiple requests and the process() method.

A common characteristic for both SkipProcessor
and QueryProcessor is the presence of the process()
method. This method completes the description of the
use case and accepts the ActionState type to which
it corresponds. This method returns a Starter object
to allow you to declaratively describe other scenarios
that belong to the same general state [5].

It is important to note that one Core can have a list
of scenarios for several general states, if necessary.
Sometimes one scenario can change a general state,
which will make it impossible to use other scenarios for
this state, but will disable the ability to run those scenarios
that belong to other states and are specified in this Core.
The diagram of Core classes is shown in Figure 11.

Fig. 11. Diagram of Core classes

203

Інформатика, обчислювальна техніка та автоматизація

Conclusions. We designed and implemented an
architectural framework for templating the functionality
of an iOS application that provides all the necessary
tools for software development with a minimum number
of errors in setting up data flows, requires attention to
important details when developing functionality, and
prevents unexpected and improper use.

We also developed an ideology of proper
architecture that combines all the advantages of
different patterns and focuses on designing and
developing business functionality, analyzed how
important the right approach to designing mobile
application architecture is and the role of architectural
frameworks in this.

The framework was divided into protocols and
their basic implementations, each of which was
displayed using UML tools. The framework was

implemented using the Swift programming language
in the Xcode development environment based on
the RxSwift reactive framework with the Reactive
Extensions methodology.

The developed framework meets the goal,
templates the functionality of the iOS application with
the ability to reuse it in different projects, provides
a convenient API that allows you to fully describe
scenarios at a high level.

In the future, this framework can be used in
software for designers and managers, which will
allow creating scenarios at the software design
stage and code generators, which reduces the human
impact on the quality of the resulting work and the
speed of its execution. Such software tools have a
great economic impact on the mobile development
industry and software development in general.

Bibliography:
1. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software - Addison-Wesley, 1994. – 395 с.
2. ReactiveX: An API for asynchronous programming with observable streams. URL:

http://reactivex.io – Title from the screen.
3. 5 Best Swift IDE. URL: https://www.dunebook.com/5-best-ide-swift-programming/ – Title from the screen.
4. Jacobson, Ivar; Spence, Ian; Bittner, Kurt (December 2011). "Use Case 2.0: The Guide to Succeeding with

Use Cases". Ivar Jacobson International. Retrieved 5 May 2014.
5. Architectural Styles and Architectural Patterns. Medium. URL: https://medium.com/@mlbors/architectural-

styles-and-architectural-patterns-c240f7df88a0 – Title from the screen.

Нікітенко Є.В., Гуйда О.Г. АРХІТЕКТУРНИЙ ФРЕЙМВОРК ДЛЯ ШАБЛОНІЗАЦІЇ
ФУНКЦІОНАЛУ МОБІЛЬНОГО ДОДАТКА ДЛЯ iOS НА БАЗІ REACTIVE EXTENSIONS

З ростом попиту на послуги через мобільні додатки помітно зростає очікування користувачів щодо
якості та швидкості роботи програми. Також іншою серйозною проблемою є тиск з боку конкурентів.
В наслідок цього збільшується складність розроблюваних програм, розмір кодової бази, кількість різ-
них спеціальностей та команд для одного проекту. Крім того, ускладнюється керування, звітування
та введення нових кадрів.

Головна мета даної роботи - розробити фреймворк для операційної системи iOS, який буде нада-
вати зручний API для розробки функцій додатку, обмежуючи розробника у налаштуванні комуніка-
цій між архітектурними компонентами, фокусуючи його на деталях реалізації функцій предметної
області бізнесу.

Розроблюваний програмний продукт – це архітектурний фреймворк для шаблонізації функціоналу
мобільного додатку для iOS на базі Reactive Extensions.

Результатом роботи є можливість фреймворку надавати наступні можливості:
− створювати додатки багатомодульними;
− бізнес-логіка додатків повинна мати змогу бути використаною повторно;
− додатки повинні легко піддаватися тестуванню;
− код додатків повинен мати можливість легко модифікуватися;
− додаток, що використовує фреймворк, повинен бути легко підтримуваним;
− додаток, що використовує фреймворк, повинен мати можливість легко розширюватися.
У перспективі даний фреймворк можна використовувати у програмних забезпеченнях для дизай-

нерів та менеджерів, який дозволятиме створювати сценарії на етапі проектування програмного
забезпечення та генераторах коду, який знижує людський вплив на якість результуючої роботи та
швидкість її виконання. Такі програмні засоби мають великий економічний вплив на індустрію мобіль-
ної розробки та розробки програмного забезпечення в цілому.

Ключові слова: архітектура програмного забезпечення, операційна система iOS, додаток,
фреймворк.

